Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; : 116219, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643907

RESUMO

The pivotal roles of ATP-binding cassette (ABC) transporters in drug resistance have been widely appreciated. Here we report that marein, a natural product from Coreopsis tinctoria Nutt, is a potent chemo-sensitizer in drug resistant cancer cells overexpressing ABCG2 transporter. We demonstrate that marein can competitively inhibit efflux activity of ABCG2 protein and increase the intracellular accumulation of the chemotherapeutic drugs that belong to substrate of this transporter. We further show that marein can bind to the conserved amino acid residue F439 of ABCG2, a critical site for drug-substrate interaction. Moreover, marein can significantly sensitize the ABCG2-expressing tumor cells to chemotherapeutic drugs such as topotecan, mitoxantrone, and Olaparib. This study reveals a novel role and mechanism of marein in modulating drug resistance, and may have important implications in treatment of cancers that are resistant to chemotherapeutic drugs that belong to the substrates of ABCG2 transporters.

2.
PeerJ ; 12: e17039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590700

RESUMO

Background: Acute pulmonary embolism (APE) is classified as a subset of diseases that are characterized by lung obstruction due to various types of emboli. Current clinical APE treatment using anticoagulants is frequently accompanied by high risk of bleeding complications. Recombinant hirudin (R-hirudin) has been found to have antithrombotic properties. However, the specific impact of R-hirudin on APE remains unknown. Methods: Sprague-Dawley (SD) rats were randomly assigned to five groups, with thrombi injections to establish APE models. Control and APE group rats were subcutaneously injected with equal amounts of dimethyl sulfoxide (DMSO). The APE+R-hirudin low-dose, middle-dose, and high-dose groups received subcutaneous injections of hirudin at doses of 0.25 mg/kg, 0.5 mg/kg, and 1.0 mg/kg, respectively. Each group was subdivided into time points of 2 h, 6 h, 1 d, and 4 d, with five animals per point. Subsequently, all rats were euthanized, and serum and lung tissues were collected. Following the assessment of right ventricular pressure (RVP) and mean pulmonary artery pressure (mPAP), blood gas analysis, enzyme-linked immunosorbnent assay (ELISA), pulmonary artery vascular testing, hematoxylin-eosin (HE) staining, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, immunohistochemistry, and Western blot experiments were conducted. Results: R-hirudin treatment caused a significant reduction of mPAP, RVP, and Malondialdehyde (MDA) content, as well as H2O2 and myeloperoxidase (MPO) activity, while increasing pressure of oxygen (PaO2) and Superoxide Dismutase (SOD) activity. R-hirudin also decreased wall area ratio and wall thickness to diameter ratio in APE rat pulmonary arteries. Serum levels of endothelin-1 (ET-1) and thromboxaneB2 (TXB2) decreased, while prostaglandin (6-K-PGF1α) and NO levels increased. Moreover, R-hirudin ameliorated histopathological injuries and reduced apoptotic cells and Matrix metalloproteinase-9 (MMP9), vascular cell adhesion molecule-1 (VCAM-1), p-Extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P65/P65 expression in lung tissues. Conclusion: R-hirudin attenuated pulmonary hypertension and thrombosis in APE rats, suggesting its potential as a novel treatment strategy for APE.


Assuntos
Hominidae , Hipertensão Pulmonar , Embolia Pulmonar , Trombose , Ratos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Ratos Sprague-Dawley , Hirudinas/farmacologia , Peróxido de Hidrogênio/uso terapêutico , Embolia Pulmonar/complicações , Trombose/tratamento farmacológico
3.
Drug Resist Updat ; 74: 101077, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38518726

RESUMO

PURPOSE: Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer. METHODS: The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function. The Chembridge Compound Library was screened, and the top 20 candidate compounds were tested for their interaction with SIK2 and downstream substrates, AKT-pS473 and MYLK-pS343. SIC-19 emerged as the most promising drug candidate and was further evaluated using multiple assays. RESULTS: SIC-19 exhibited selective and potent inhibition of SIK2, leading to its degradation through the ubiquitination pathway. The IC50 of SIC-19 correlated inversely with endogenous SIK2 expression in ovarian cancer cell lines. Treatment with SIC-19 significantly inhibited cancer cell growth and sensitized cells to PARP inhibitors in vitro, as well as in ovarian cancer organoids and xenograft models. Mechanistically, SIK2 knockdown and SIC-19 treatment reduced RAD50 phosphorylation at Ser635, prevented nuclear translocation of RAD50, disrupted nuclear filament assembly, and impaired DNA homologous recombination repair, ultimately inducing apoptosis. These findings highlight the crucial role of SIK2 in the DNA HR repair pathway and demonstrate the significant PARP inhibitor sensitization achieved by SIC-19 in ovarian cancer. CONCLUSIONS: SIC-19, a novel SIK2 inhibitor, effectively inhibits tumor cell growth in ovarian cancer by interfering with RAD50-mediated DNA HR repair. Furthermore, SIC-19 enhances the efficacy of PARP inhibitors, providing a promising therapeutic strategy to improve outcomes for ovarian cancer patients.

4.
Heliyon ; 10(6): e28083, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533057

RESUMO

Background: As a ribosome receptor, LRRC59 was thought to regulate mRNA translation on the ER membrane. Evidence suggests that LRRC59 is overexpressed in a number of human malignancies and is associated with poor prognoses, but its primary biological function in the development of oral squamous cell carcinoma (OSCC) remains obscure. Objective: The purpose of this study is to investigate at the expression changes and functional role of LRRC59 in OSCC. Methods: LRRC59 gene expression and correlation with prognosis of OSCC patients were first examined using the data from The Cancer Genome Atlas (TCGA) databases. Following that, a series of functional experiments, including cell counting kit-8, cell cycle analysis, wound healing assays, and transwell assays, were carried out to analyze the biological roles of LRRC59 in tumor cells. Mechanistically, we employed Tandem Affinity Purification-Mass Spectrometry (TAP-MS) approach to isolate and identify protein complexes of LRRC59. Downstream regulatory proteins of LRRC59 were verified through immunoprecipitation and immunofluorescence experiments. Furthermore, we isolated exosomes from OSCC cell supernatant and conducted co-culture experiments to examine the effect of LRRC59 knockdown on OSCC cells. Results: In samples from OSCC patients, LRRC59 was highly expressed and correlated with poor prognoses. Moreover, the gene sets analysis based on TCGA RNA-seq data indicated that LRRC59 seemed to be strongly related with protein secretory and OSCC migration. Upregulated levels of LRRC59 are more prone to lymph node metastasis in OSCC patients. LRRC59 knockdown impaired the ability of OSCC cell proliferation, migration, and invasion invitro. Mechanistically, our TAP-MS data situate LRRC59 in a functional nexus for mRNA translation regulation via interactions with SRP pathway components, translational initiation factors, CRD-mediated mRNA stabilization factors. More importantly, we found that LRRC59 interacted with cytoskeleton-associated protein 4 (CKAP4) and promoted the formation of CKAP4-containing exosomes. We also revealed that the LRRC59-CKAP4 axis was a crucial regulator of CKAP4-containing exosome secretion in OSCC cells for migration and invasion. Conclusions: Therefore, based on our findings, LRRC59 may serve as a potential biomarker for OSCC patients, and LRRC59-induced exosome secretion via the CKAP4 axis may serve as a potential therapeutic target for OSCC.

5.
Inhal Toxicol ; 36(3): 145-157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411938

RESUMO

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a common disorder that is characterized by systemic and lung inflammation. Notoginsenoside R1 (NGR1) displays anti-inflammatory properties in numerous diseases. We aimed to explore the function and mechanism of NGR1 in COPD. MATERIALS AND METHODS: COPD rats were established through cigarette smoke exposure, lipopolysaccharide injection, and cold stimulation. Rat airway smooth muscle cells (ASMCs) were separated and identified. Then, ASMCs were treated with NGR1 (25 or 50 µM) and cigarette smoke extract (CSE). Thereafter, the vitality, proliferation, and migration of ASMCs were measured. Additionally, cell cycle, inflammation-related factors, α-SMA, and PI3K/AKT pathway-related marker expressions of the ASMCs were also detected. Molecular docking experiments were conducted to explore the interaction of NGR1 to PI3K, TGF-ß, p65, and AKT. Moreover, 740 Y-P (a PI3K/Akt pathway agonist) were used to validate the mechanism of NGR1 on COPD. RESULTS: NGR1 inhibited the proliferation and migration, but caused cell cycle arrest for CSE-triggered ASMCs. Furthermore, NGR1 not only decreased IL-1ß, IL-6, IL-8, and TNF-α contents, but also reduced α-SMA expression in CSE-stimulated ASMCs. Moreover, NGR1restrainedTGF-ß1 expression, PI3K, p65, and AKT phosphorylation in CSE-stimulated ASMCs. Molecular docking experiments showed NGR1 exhibited a strong binding ability to PI3K, TGF-ß1, p65, and AKT. Notably, the effects of NGR1 on the proliferation and migration of CSE-induced ASMCs were reversed by 740 Y-P. CONCLUSIONS: NGR1 can restrain the proliferation and migration of CSE-induced ASMCs, indicating that NGR1 may be a therapeutic candidate for treating COPD.


Assuntos
Ginsenosídeos , Proteínas Proto-Oncogênicas c-akt , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Simulação de Acoplamento Molecular , Proliferação de Células , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Miócitos de Músculo Liso/metabolismo
6.
PeerJ ; 11: e16292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901456

RESUMO

Background: Lung cancer (LC) is the most prevalent cancer with a poor prognosis. Semaphorin4A (Sema4A) is important in many physiological and pathological processes. This study aimed to explore the role and mechanism of Sema4A in LC. Methods: Firstly, Sema4A expression was analyzed by the available dataset and detected in human normal bronchial epithelial cell line (HBE) and LC cell line (NCI-H460). Then, LC cells were transfected with Sema4A siRNA, and the cells were stimulated by PlexinB1, PlexinB2, PlexinD1 blocking antibodies, IgG antibody, BAY 11-7082 (an inhibitor for NF-κB pathway) and Sema4A-Fc protein, alone or in combination. After transfection, PlexinB1 mRNA expression was analyzed. Next, the biological functions, including proliferative, migratory, invasive abilities and viability of the cells were detected by colony formation, scratch, Transwell and MTT assays, respectively. NF-κB, Stat3 and MAPK protein expressions were determined by western blot. Furthermore, the secretion of IL-6 in LC cells was tested by ELISA. Results: Sema4A was highly expressed in LC tissues and cells, could activate the NF-κB pathway and upregulate PlexinB1 mRNA expression. Furthermore, we observed that Sema4A knockdown suppressed the biological functions of NCI-H460 cells, while Sema4A-Fc protein reversed the situation. However, Sema4A-induced biological functions and activation in the NF-κB pathway were inhibited by PlexinB1 blocking antibody. Consistently, Sema4A promoted IL-6 production, which was down-regulated by PlexinB1 blocking antibody and BAY 11-7082. Conclusions: Sema4A may facilitate LC development via the activation of the NF-κB pathway mediated by PlexinB1, suggesting that Sema4A would be a novel therapeutic target for LC treatment.


Assuntos
Neoplasias Pulmonares , NF-kappa B , Semaforinas , Humanos , Interleucina-6 , Neoplasias Pulmonares/genética , NF-kappa B/genética , RNA Mensageiro , Semaforinas/genética
7.
Biochem Pharmacol ; 211: 115533, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019189

RESUMO

In this study, we uncovered the nuclear export of nucleus accumbens-associated protein-1 (NAC1) as a novel mechanism involved in ovarian cancer resistance to taxanes, the chemotherapeutic drugs commonly used in treatment of this malignancy. We showed that NAC1, a nuclear factor of the BTB/POZ gene family, has a nuclear export signal (NES) at the N terminus (aa 17-28), and this NES critically contributes to the NAC1 nuclear-cytoplasmic shuttling when tumor cells were treated with docetaxel. Mechanistically, the nuclear-exported NAC1 bound to cullin3 (Cul3) and Cyclin B1 via its BTB and BOZ domains respectively, and the cyto-NAC1-Cul3 E3 ubiquitin ligase complex promotes the ubiquitination and degradation of Cyclin B1, thereby facilitating mitotic exit and leading to cellular resistance to docetaxel. We also showed in in vitro and in vivo experiments that TP-CH-1178, a membrane-permeable polypeptide against the NAC1 NES motif, blocked the nuclear export of NAC1, interfered with the degradation of Cyclin B1 and sensitized ovarian cancer cells to docetaxel. This study not only reveals a novel mechanism by which the NAC1 nuclear export is regulated and Cyclin B1 degradation and mitotic exit are impacted by the NAC1-Cul3 complex, but also provides the nuclear-export pathway of NAC1 as a potential target for modulating taxanes resistance in ovarian cancer and other malignancies.


Assuntos
Neoplasias Ovarianas , Proteínas Repressoras , Humanos , Feminino , Transporte Ativo do Núcleo Celular , Docetaxel/farmacologia , Ciclina B1/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias Ovarianas/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-36276870

RESUMO

Background: Molecular categorization of lung cancer in medical care is becoming increasingly important on a regular basis. One of the molecular classifications of NSCLC (early-stage NSCLC) supports that tumors of different biological varieties differ in terms of their genomes and clinical characteristics. Methods: Based on published immune cell signatures and early-stage NSCLC gene expression data including cancer genome maps, we used consensus cluster analysis to identify immune molecular subtypes associated with early-stage NSCLC expression subtypes. These subtypes were correlated with early-stage NSCLC expression subtypes. Next, applying a wide range of statistical techniques, we evaluated the link between molecular subtypes and clinical features, immunological microenvironment, and immunotherapy reactivity. Molecular subtypes were defined as a classification of cancerous cells. Results: Multiple RNAseq cross-platform datasets of immune genes were used to identify two molecular subtypes (C1 and C2) of NSCLC, with C1 showing a more favorable prognosis than C2. The results were validated on the CSE datasets. In terms of clinical characteristics, C2 subtype samples with a worse prognosis showed a more advanced tumor stage and higher mortality. C2 showed immuno-infiltrative characteristics but had depletion of T-cells. Biological functions such as EMT were enriched on C2. A low TIDE score in C1 indicated that C1 samples could benefit from taking immunotherapy. C2 were more susceptible to standard chemotherapeutic treatments such paclitaxel, cisplatin, sorafenib, crizotinib, and erlotinib. Conclusion: According to our findings, early-stage NSCLC patients may benefit from receiving treatment with immune checkpoint blockade therapy.

9.
Front Oncol ; 12: 848406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392234

RESUMO

In spite of improvements in diagnostics and treatment of gastric cancer (GC), it remains the most common malignancy of human digestive system. It is now widely appreciated that long noncoding RNAs (lncRNAs) exert extensive regulatory effects on a spectrum of fundamental biological processes through diverse mechanisms. In this study, we explored the expression level and functional role of lncRNA RP11-138J23.1 in GC. Through bioinformatics analyses and in situ hybridization (ISH), we identified that RP11-138J23.1 was upregulated in GC tissue. Further study showed that RP11-138J23.1 knockdown significantly inhibited cell proliferation and metastatic ability. Whereas, RP11-138J23.1 overexpression could promote tumor cell growth and metastasis in vitro. Additionally, loss-of-function assays were used to confirm the role of RP11-138J23.1 in vivo. Mechanistically, RP11-138J23.1 exerted its oncogenic functions by binding to HuR protein and increasing stability of VAV3 mRNA. Overall, our study highlights the essential role of RP11-138J23.1 in GC, suggesting that RP11-138J23.1 might be a potent therapeutic target for patients with GC.

10.
Mol Ther ; 29(7): 2209-2218, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33775912

RESUMO

Compared to normal cells, cancer cells exhibit specific metabolic characteristics that facilitate the growth and metastasis of cancer. It is now widely appreciated that long non-coding RNAs (lncRNAs) exert extensive regulatory effects on a spectrum of biological processes through diverse mechanisms. In this review, we focus on the rapidly advancing field of lncRNAs and summarize the relationship between the dysregulation of lncRNAs and cancer metabolism, with a particular emphasis on the specific roles of lncRNAs in glycolysis, mitochondrial function, glutamine, and lipid metabolism. These investigations reveal that lncRNAs are a key factor in the complexity of malignant cancer metabolism. Only through understanding the relevance between lncRNAs and cancer metabolic reprogramming can we open a new chapter in the history of carcinogenesis, one that promises to alter the methods of cancer diagnosis and treatment.


Assuntos
Glutamina/metabolismo , Glicólise , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Neoplasias/patologia , RNA Longo não Codificante/genética , Animais , Humanos , Mitocôndrias/genética , Neoplasias/genética , Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo
11.
Theranostics ; 11(2): 906-924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391512

RESUMO

Purpose: Novel collagenase IV (ColIV) and clusterin (CLU)-modified polycaprolactone-polyethylene glycol (PCL-PEG) nanoparticles that load doxorubicin (DOX) were designed and fully evaluated in vitro and in vivo. Methods: PCL-PEG-ColIV was synthesized by linking PCL-PEG and ColIV through a carbodiimide method. DOX-loaded nanoparticles (DOX-PCL-PEG-ColIV) were self-assembly prepared, followed by noncovalently adsorbing CLU on the DOX-PCL-PEG-ColIV surface to obtain DOX-PCL-PEG-ColIV /CLU nanoparticles, which can penetrate through the tumor extracellular matrix (ECM) and inhibit phagocytosis by macrophage. The physicochemical properties of nanoparticles were characterized. The cellular uptake and antiphagocytosis ability of nanoparticles in MCF-7 tumor cells and RAW264.7 cells were investigated. The penetration ability of nanoparticles was individually evaluated in the two-dimensional (2D) and three-dimensional (3D) ECM models. The tissue distribution and antitumor effect of nanoparticles were evaluated in MCF-7 cell-bearing nude mice. Results: Compared with DOX-PCL-PEG-COOH nanoparticles, DOX-PCL-PEG-ColIV/CLU nanoparticles could effectively overcome the phagocytosis by RAW264.7 and showed excellent cellular uptake in MCF-7 cells. In addition, they showed remarkable penetration ability through the 2D and 3D ECM models. DOX-PCL-PEG-ColIV/CLU nanoparticles significantly reduced the drug distribution in the liver and spleen and enhanced the drug accumulation in tumor tissue compared with DOX-PCL-PEG-COOH or DOX-PCL-PEG-ColIV nanoparticles. DOX-PCL-PEG-ColIV/CLU nanoparticles showed remarkable antitumor effect but did not cause severe pathological damages in the main tissues, including the heart, liver, spleen, lung, and kidney. Conclusion: Novel ColIV and CLU-modified PCL-PEG nanoparticles showed excellent cellular uptake, ECM penetration, antiphagocytosis, and antitumor effects both in vitro and in vivo.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Clusterina/metabolismo , Colagenases/metabolismo , Doxorrubicina/farmacologia , Nanopartículas/administração & dosagem , Poliésteres/química , Polietilenoglicóis/química , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Clusterina/genética , Colagenases/genética , Portadores de Fármacos/química , Feminino , Humanos , Camundongos , Camundongos Nus , Micelas , Nanopartículas/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biomed Res Int ; 2020: 3416807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596300

RESUMO

Lung cancer is one of the most malignant tumors in the world. Early diagnosis and treatment of lung cancer are vitally important to reduce the mortality of lung cancer patients. In the present study, we attempt to identify the candidate biomarkers for lung cancer by weighted gene co-expression network analysis (WGCNA). Gene expression profile of GSE30219 was downloaded from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) were analyzed by the limma package, and the co-expression modules of genes were built by WGCNA. UALCAN was used to analyze the relative expression of normal group and tumor subgroups based on tumor individual cancer stages. Survival analysis for the hub genes was performed by Kaplan-Meier plotter analysis with the TCGA database. A total of 2176 genes (745 upregulated and 1431 downregulated genes) were obtained from the GSE30219 database. Seven gene co-expression modules were conducted by WGCNA and the blue module might be inferred as the most crucial module in the pathogenesis of lung cancer. In the pathway enrichment analysis of KEGG, the candidate genes were enriched in the "DNA replication," "Cell cycle," and "P53 signaling pathway" pathways. Among these, the cell cycle pathway was the most significant pathway in the blue module with four hub genes CCNB1, CCNE2, MCM7, and PCNA which were selected in our study. Kaplan-Meier plotter analysis indicated that the high expressions of four hub genes were correlated with a worse overall survival (OS) and advanced tumors. qRT-PCR showed that mRNA expression levels of MCM7 (p = 0.038) and CCNE2 (0.003) were significantly higher in patients with the TNM stage. In summary, the high expression of the MCM7 and CCNE2 were significantly related with advanced tumors and worse OS in lung cancer. Thus, the MCM7 and CCNE2 genes can be good indicators for cellular proliferation and prognosis in lung cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , Mapas de Interação de Proteínas/genética , Transcriptoma/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Proliferação de Células , Biologia Computacional/métodos , Ciclinas/genética , Bases de Dados Genéticas , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Prognóstico
13.
Nat Commun ; 10(1): 5421, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780645

RESUMO

Radiofrequency ablation (RFA) promotes tumor antigen-specific T cell responses and enhances the effect of immunotherapy in preclinical settings. Here we report that the existence of remnant tumor masses due to incomplete RFA (iRFA) is associated with earlier new metastases and poor survival in patients with colorectal cancer liver metastases (CRCLM). Using mouse models, we demonstrate that iRFA promotes tumor progression and hinders the efficacy of anti-PD-1 therapy. Immune analysis reveals that iRFA induces sustained local inflammation with predominant myeloid suppressor cells, which inhibit T cell function in tumors. Mechanistically, tumor cell-derived CCL2 is critical for the accumulation of monocytes and tumor-associated macrophages (TAMs). The crosstalk between TAMs and tumor cells enhances the CCL2 production by tumor cells. Furthermore, we find that administration of a CCR2 antagonist or the loss of CCL2 expression in tumor cells enhances the antitumor activity of PD-1 blockade, providing a salvage alternative for residual tumors after iRFA.


Assuntos
Quimiocina CCL2/imunologia , Neoplasias Colorretais/patologia , Inflamação/imunologia , Neoplasias Hepáticas/cirurgia , Macrófagos/imunologia , Neoplasia Residual/imunologia , Ablação por Radiofrequência , Linfócitos T/imunologia , Adulto , Idoso , Animais , Anticorpos Monoclonais , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos , Células Supressoras Mieloides/imunologia , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores CCR2/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia
14.
Anal Cell Pathol (Amst) ; 2019: 4265040, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838170

RESUMO

OBJECTIVE: The receptor-type tyrosine-protein phosphatase κ (PTPRK) is a candidate tumor suppressor involved in the tumorigenesis of various organs. However, its expression and biological roles in non-small-cell lung cancer (NSCLC) have not yet been investigated. METHODS: PTPRK expression in NSCLC tissues and cell lines was examined using real-time PCR and western blotting. In addition, the effects of PTPRK on cell migration, invasion, and proliferation were evaluated in vitro. Furthermore, we explored whether the downregulation of PTPRK led to STAT3 activation in NSCLC cell lines by western blotting. The expression of phospho-STAT3Tyr705 in primary human NSCLC tissues was evaluated by immunohistochemistry. RESULTS: The results showed that PTPRK expression was frequently reduced in NSCLC tissues with lymph node metastasis and cell lines. The inhibition of PTPRK expression resulted in increased proliferation, invasion, and migration of NSCLC cells in vitro. Additionally, after silencing of PTPRK, phospho-STAT3Tyr705 was significantly increased in NSCLC cells. Moreover, the phospho-STAT3Tyr705 levels of NSCLC tissues were positively correlated with lymph node metastasis and significantly inversely correlated with the expression of PTPRK (p < 0.05). CONCLUSIONS: These results suggested that PTPRK functions as a novel tumor suppressor in NSCLC, and its suppressive ability may be involved in STAT3 activation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Metástase Linfática/patologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Fator de Transcrição STAT3/metabolismo , Células A549 , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica , Metástase Linfática/genética , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Fator de Transcrição STAT3/genética , Cicatrização/genética , Cicatrização/fisiologia
15.
Pathol Res Pract ; 214(5): 776-783, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29628123

RESUMO

OBJECTIVE: Non-small cell lung cancer (NSCLC) accounts for 80-85% of lung cancer cases which cause most of cancer-related deaths globally. As our previous study discovered miR-1260b can be regarded as a specific signature for metastasis in NSCLC patients. However, the molecular mechanisms of miR-1260b underlying NSCLC progression and metastasis remain dismal. METHODS: The expression of miR-1260b in NSCLC tissues and cell lines were examined by real-time PCR, the effects of miR-1260b on cell migration, invasion and proliferation were evaluated in vitro. Furthermore, luciferase reporter assay was performed to identify the targets of miR-1260b, and the association between miR-1260b and its target gene was determined by real-time PCR and western blot assay. RESULTS: The results showed that miR-1260b was significantly upregulated in NSCLC cell lines. The inhibition of miR-1260b expression decreased the migratory and invasive rates in A549 cells while miR-1260b overexpression had the opposite effect. Furthermore, PTPRK was identified as a direct target of miR-1260b, and PTPRK expression was inversely correlated with miR-1260b in NSCLC cell lines and clinical tissues. CONCLUSIONS: These results suggested that miR-1260b may play an important role in NSCLC metastasis progression and could serve as a putative target for diagnosis and treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/genética , Humanos , Neoplasias Pulmonares/genética , Regulação para Cima
16.
Interact Cardiovasc Thorac Surg ; 26(3): 395-401, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29049797

RESUMO

OBJECTIVES: Astrocyte elevated gene-1 (AEG-1) functions to mediate angiogenesis, and its upregulation is responsible for tumour angiogenesis during cancer development. This study analysed AEG-1 expression in non-small-cell lung cancer (NSCLC) for association with NSCLC clinicopathological features and tumour angiogenesis. METHODS: The expression of AEG-1, vascular endothelial growth factor and intratumoural microvessel density (assessed using the expression of CD105) was detected by immunohistochemistry in 88 paired tumour tissue and adjacent normal tissue specimens obtained from NSCLC patients. The Kaplan-Meier curves were used for survival analysis through an online tool (http://kmplot.com/analysis/). RESULTS: AEG-1 was overexpressed in 61.3% of NSCLC tissues vs 6.8% (6/88) of normal tissues (P < 0.001). AEG-1 expression in NSCLC was significantly associated with advanced pTNM stage (P = 0.021), tumour dedifferentiation (P = 0.034), vascular invasion (P = 0.035), lymph node metastasis (P < 0.001) and poor overall survival (P = 0.024). Moreover, the expression of AEG-1 in NSCLC was associated with tumour angiogenesis; that is, vascular endothelial growth factor overexpression (P < 0.001) and intratumoural microvessel density (P < 0.001). CONCLUSIONS: This study demonstrates that AEG-1 expression is associated with NSCLC development, angiogenesis, progression and poor prognosis, indicating that the adjuvant therapy with antiangiogenic agent be adopted for the early postoperative period before the start of conventional chemotherapy in patients with AEG-1 overexpressed NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Moléculas de Adesão Celular/metabolismo , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/mortalidade , Metástase Linfática , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Prognóstico , Proteínas de Ligação a RNA , Análise de Sobrevida , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Pathol Res Pract ; 213(10): 1257-1263, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28941723

RESUMO

Astrocyte-elevated gene-1 (AEG-1) is implicated in the oncogenesis and angiogenesis of various types of human malignant disease. However, the angiogenesis roles of AEG-1 in non-small cell lung cancer (NSCLC) remain to be further elucidated. In the present study, the expression level of AEG-1 mRNA in seven human lung cell lines and 89 paired tissue samples (tumor tissues (TTs) and pair-matched normal adjacent tissues (PMNATs)) from NSCLC patients was detected by real-time PCR. Staining of vascular endothelial growth factor (VEGF) and intratumoral microvessel density (iMVD, labeled by CD105) were assessed by immunohistochemistry. Furthermore, cell migration and invasion were evaluated by wound healing assay and transwell assays. AEG-1 mRNA level was significantly higher in human lung cancer cells and TTs than that in human normal bronchial epithelial cell line 16HBE and PMNATs, respectively (P<0.001). Higher AEG-1 mRNA level in patients with NSCLC was correlated with clinical stages (P=0.028), differentiation (P=0.042), and lymph node metastasis (P=0.004). Moreover, Upregulated AEG-1 mRNA expression level was associated with higher tumor angiogenesis, reflected by the increase of VEGF expression and iMVD counting (P=0.021, P<0.001). However, 95D cell line transfected with AEG-1 siRNA oligos (siAEG-1) exhibited no significant decrease of cell invasion or migration capacities when compared with the control cells (P>0.05).These results suggested that AEG-1 may play important roles at the transcription level in malignant transformation and tumor angiogenesis in NSCLC, and anti-AEG-1 mRNA expression may be a novel potential strategy for anti-angiogenic therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Moléculas de Adesão Celular/genética , Neoplasias Pulmonares/genética , Neovascularização Patológica , RNA Mensageiro/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/secundário , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Linfática , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Transdução de Sinais , Transcrição Gênica , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Exp Med ; 214(5): 1453-1469, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28400474

RESUMO

T helper type 17 cells (Th17 cells) are major contributors to many autoimmune diseases. In this study, we demonstrate that the germinal center kinase family member MINK1 (misshapen/NIK-related kinase 1) negatively regulates Th17 cell differentiation. The suppressive effect of MINK1 on induction of Th17 cells is mediated by the inhibition of SMAD2 activation through direct phosphorylation of SMAD2 at the T324 residue. The importance of MINK1 to Th17 cell differentiation was strengthened in the animal model of experimental autoimmune encephalomyelitis (EAE). Moreover, we show that the reactive oxygen species (ROS) scavenger N-acetyl cysteine boosts Th17 cell differentiation in a MINK1-dependent manner and exacerbates the severity of EAE. Thus, we have not only established MINK1 as a critical regulator of Th17 cell differentiation, but also clarified that accumulation of ROS may limit the generation of Th17 cells. The contribution of MINK1 to ROS-regulated Th17 cell differentiation may suggest an important mechanism for the development of autoimmune diseases influenced by antioxidant dietary supplements.


Assuntos
Proteínas Serina-Treonina Quinases/fisiologia , Células Th17/fisiologia , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Proteína Smad2/fisiologia
19.
Curr Biol ; 24(18): 2097-2110, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25176633

RESUMO

BACKGROUND: Repair of DNA double-strand breaks (DSBs) by homologous recombination requires 5'-3' resection of the DSB ends. In vertebrates, DSB resection is initiated by the collaborative action of CtIP and the MRE11-RAD50-NBS1 (MRN) complex. However, how this process occurs within the context of chromatin is still not well understood. RESULTS: Here we identify the human SRCAP chromatin remodeling complex as a factor that promotes CtIP-dependent DNA-end resection. We show that SRCAP, which is mutated in Floating-Harbor syndrome, confers resistance to DNA damage-inducing agents and is recruited to DSBs. Moreover, we demonstrate that SRCAP is required for DNA-end resection, and thereby for recruitment of RPA and RAD51 to DSBs, and for the ensuing homologous recombination. Finally, we reveal that SRCAP forms a complex with CtIP and promotes accumulation of CtIP at DSBs through a mechanism involving its ATPase activity. CONCLUSIONS: Our study implicates the human SRCAP chromatin remodeling complex as a novel regulator of DNA damage responses that orchestrates proper signaling and repair of DSBs in the context of chromatin.


Assuntos
Adenosina Trifosfatases/genética , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Dano ao DNA , Imunofluorescência , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Células HeLa , Comunicação Interventricular/genética , Comunicação Interventricular/metabolismo , Humanos , Reação em Cadeia da Polimerase
20.
Proc Natl Acad Sci U S A ; 110(26): 10646-51, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23509288

RESUMO

The Bloom syndrome gene product, BLM, is a member of the highly conserved RecQ family. An emerging concept is the BLM helicase collaborates with the homologous recombination (HR) machinery to help avoid undesirable HR events and to achieve a high degree of fidelity during the HR reaction. However, exactly how such coordination occurs in vivo is poorly understood. Here, we identified a protein termed SPIDR (scaffolding protein involved in DNA repair) as the link between BLM and the HR machinery. SPIDR independently interacts with BLM and RAD51 and promotes the formation of a BLM/RAD51-containing complex of biological importance. Consistent with its role as a scaffolding protein for the assembly of BLM and RAD51 foci, cells depleted of SPIDR show increased rate of sister chromatid exchange and defects in HR. Moreover, SPIDR depletion leads to genome instability and causes hypersensitivity to DNA damaging agents. We propose that, through providing a scaffold for the cooperation of BLM and RAD51 in a multifunctional DNA-processing complex, SPIDR not only regulates the efficiency of HR, but also dictates the specific HR pathway.


Assuntos
Proteínas/metabolismo , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo , Reparo de DNA por Recombinação/fisiologia , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA , Células HEK293 , Células HeLa , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares , Mapas de Interação de Proteínas , Proteínas/química , Proteínas/genética , Rad51 Recombinase/química , Rad51 Recombinase/genética , RecQ Helicases/química , RecQ Helicases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparo de DNA por Recombinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...